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Abstract. Close combat between two forces can be modelled through a set of two coupled partial differential equations, of
second order in space and first order in time. That problem has been studied and shows a way to find stable solutions by
means of a careful selection of the discretization both in time and space and through the use of a simple transformation. The
results are generalized here for more interacting forces. It is found that the eigenvalues of the matrix that represent the system
dynamics together with the time step size shape up the stability coefficients.
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INTRODUCTION

When modelling the interaction of two forces subject to diffusion and attrition or regeneration with a background
velocity and assuming linear behavior, a set of coupled linear partial differential equations, with explicit intervention
of Laplacians, first order temporal derivatives and gradients projected over the backround velocity vectors appears.
The Finite Difference (FD) Method can be applied to solve this problem, because the main effects are likely to happen
allover the dominion and because transient behavior is of particular interest. As confidence in the results is needed,
it is paramount to analyze stability and confirm that both the stepping or the coarseness of the spatial grid is good
enough. That analysis provided here offers a criterion for examining the formulation and allow the managing of the
parameters, along with a transformation and de-transformation of the functions. This document is an extension of the
work done by the authors in [1] and is intended to serve as a first approach to more complex problems like those found
in mathematical biology [2, 3], ecology [4, 5, 6] and warfare [7, 8, 9].

THE MODEL

Interactions among n forces

Even though it is hard to find a system where every force fight against the other forces, the underlying assumption is
that there are some mainstreams in the conflict but with some heterogeinity among them. One simple situation could
include two main armies, one with B1 and B2 forces, and another one with R1 and R2 forces. Another very interesting
situation is the simplified case with one mainstream with only one kind of troops R and the other mainstream consisting
of three armies: B, B1 and B2. This case is intended to exploit the concept of sinergy, so as to have B1 and B2 that have
some performance when they are spatially separated, but once they mix, they become a third force B with enhanced
performance, better than that of B1 and B2. The general formulation suits all cases where four forces are interacting.

For the problem at stake, we use for illustrative purposes the case n = 4. The forces will be called blue, red, green
and yellow (B, R, G and Y ). Following the same diffusion behavior as in [1], the problem is expressed as:

⎡
⎢⎢⎢⎣

pBhBB∇2−MB−�v0B ·�∇ −pBhBR∇2−EBR −pBhBG∇2−EBG −pBhBY ∇2−EBY

−pRhRB∇2−ERB pRhRR∇2−MR−�v0R ·�∇ −pRhRG∇2−ERG −pRhRY ∇2−ERY

−pGhGB∇2−EGB −pGhGR∇2−EGR pGhGG∇2−MG−�v0G ·�∇ −pGhGY ∇2−EGY

−pY hY B∇2−EY B −pY hY R∇2−EY R −pY hY G∇2−EY G pY hYY ∇2−MY −�v0Y ·�∇

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣
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⎥⎥⎦ (1)
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STABILITY

No Regeneration, No Reinforcements

This is the case when the attrition coefficients Mi and Ei, j assume non negative values. For this situation the time
stepping of the equations for the linear case leads to:[(

2
Δt

I +W

)
−Q∇2

]
Un+1 =

[(
2
Δt

I−W

)
−Q∇2

]
Un (2)

On the other side, the Laplacian operator under Crank-Nicolson becomes:

∇2U ∼ 1

(Δx)2

{
Ui−1, j +Ui, j−1 +Ui, j+1 +Ui+1, j−4Ui, j

}
(3)

Now assuming local modes solution, which employs von Neumann stability analysis, as in [10], and extended to a
four-functions system, the problem remains stable if the amplitude of the local modes is kept bounded, because of the

assumption of local modes Un
j,l =

⎡
⎢⎣

ξ
η
ϕ
ψ

⎤
⎥⎦ρnei( jkx+lky)Δx. This implies that the relative amplitude ρ , should comply

ρ < 1, given the fact that the dependence of the local modes relative amplitude is represented by the succesive integer
powers of ρ . Bearing that in mind, it is possible to write:

{(
2
Δt

I +W

)
−Q∇2

}⎡
⎢⎢⎣

ρn+1ξ
ρn+1η
ρn+1ϕ
ρn+1ψ

⎤
⎥⎥⎦ei( jkx+lky)Δx =

{(
2
Δt

I−W

)
−Q∇2

}⎡
⎢⎢⎣

ρnξ
ρnη
ρnϕ
ρnψ

⎤
⎥⎥⎦ei( jkx+lky)Δx (4)

But the Laplacian, applied to the exponential, with Δx = Δy gives the following result:

∇2 ∼ 1

(Δx)2

{
eikxΔx + e−ikxΔx + eikyΔx + e−ikyΔx−4

}
(5)

∇2 ∼ 1

(Δx)2

{
2coskxΔx+2coskyΔx−4

}
=

α
(Δx)2 (6)

also:
�v0θ ·�∇ ∼

i

Δx

(
v0θx sinkxΔx+ v0θy sinkyΔx

) .
= iβθ (7)

so this last operator adds up only to the each Mθ parameter as an imaginary component (phase shifting in π/2), where
θ can be either B, R, G or Y in the n = 4 case, then:

{(
2
Δt

I +W

)
− α

(Δx)2 Q

}⎡
⎢⎢⎣

ξ
η
ϕ
ψ

⎤
⎥⎥⎦ρ =

{(
2
Δt

I−W

)
+

α
(Δx)2 Q

}⎡
⎢⎢⎣

ξ
η
ϕ
ψ

⎤
⎥⎥⎦ (8)

Calling Pθ =Mθ + iβθ , for θ = B,R,G or Y , the determinant of the involved matrix must be nil. Dividing by (ρ +1),
while rewriting the matrix, the expression is now:

det

⎡
⎢⎢⎢⎢⎢⎢⎣

( 2
Δt

)( ρ−1
ρ+1

)
+
(

PB− αQBB

(Δx)2

) (
EBR− αQBR

(Δx)2

) (
EBG− αQBG

(Δx)2

) (
EBY − αQBY

(Δx)2

)
(

ERB− αQRB

(Δx)2

) ( 2
Δt

)( ρ−1
ρ+1

)
+
(

PR− αQRR

(Δx)2

) (
ERG− αQRG

(Δx)2

) (
ERY − αQRY

(Δx)2

)
(

EGB− αQGB

(Δx)2

) (
EGR− αQGR

(Δx)2

) ( 2
Δt

)( ρ−1
ρ+1

)
+
(

PG− αQGG

(Δx)2

) (
EGY − αQGY

(Δx)2

)
(

EY B− αQY B

(Δx)2

) (
EY R− αQY R

(Δx)2

) (
EY G− αQY G

(Δx)2

) ( 2
Δt

)( ρ−1
ρ+1

)
+
(

PY − αQYY

(Δx)2

)

⎤
⎥⎥⎥⎥⎥⎥⎦
= 0 (9)

And the previous equation is equivalent to finding the eigenvalues of the matrix C4, where the eigenvalues are

λ =
( 2

Δt

)( 1−ρ
1+ρ

)
, so ρi =

1− Δt
2 λi

1+ Δt
2 λi

= 2−λi·Δt
2+λi·Δt

and
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⎡
⎢⎢⎢⎢⎢⎢⎣

(
PB− αQBB

(Δx)2

) (
EBR− αQBR

(Δx)2

) (
EBG− αQBG

(Δx)2

) (
EBY − αQBY

(Δx)2

)
(

ERB− αQRB

(Δx)2

) (
PR− αQRR

(Δx)2

) (
ERG− αQRG

(Δx)2

) (
ERY − αQRY

(Δx)2

)
(

EGB− αQGB

(Δx)2

) (
EGR− αQGR

(Δx)2

) (
PG− αQGG

(Δx)2

) (
EGY − αQGY

(Δx)2

)
(

EY B− αQY B

(Δx)2

) (
EY R− αQY R

(Δx)2

) (
EY G− αQY G

(Δx)2

) (
PY − αQYY

(Δx)2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

.
=C4. (10)

Naming the eigenvalues λi, with i = 1 . . .n. (in the example n = 4), the n eigenvalues can be obtained by using a
numerical package that needs to be run many times according to a reasonably fine combination of the phase parameters
γx = kxΔx and γy = kyΔx, that take values from 0 to 2π . It should be pointed out that kx and ky characterize the local
modes.

Once the eigenvalues are obtained, the n values for ρ are calculated, so the next step would be to plot each of the |ρi|
and see if the 3D plot shows a value greater than 1. Instead of that, and in order to get more precision, it is advisable
to plot ρ̄i = 1−|ρi| and check if the results are always positive.

In general with this model, Cn is independent on the time variable, and depends on the size of the grid.

Reinforcements and Self Regeneration of One or More Forces

Assuming that one of the forces has the biggest negative value for Mθ1θ2 , where θ can be either B, R, G or Y , and
by taking equation (1) and replacing the concentrations for the following functions θ = χ exp(st), where (θ ,χ) can
be either (B,b), (R,r), (G,g) or (Y, ỹ), the time derivative allows to replace the terms Mθ by Mθ + s, which means that
if the value chosen for s is greater than −Mθ for every θ , the equation keeps the same shape as (1) but replacing the
old value of Mθ by the new value of s+Mθ . It follows now, that the values of Mθ in the system which renders the
equations unstable, are replaced for s+Mθ in the system, leading to a stable solution.

This formulation solves the problem for b, r, g and ỹ by using the same numerical formulation, so the actual solution
is obtained by multiplying that vector by exp(st). Also, this method can help in reducing the density of the grid in x−y
or the stepping in t, even for non-regenerating relations between the functions. It is noticed that the spatial envelope of
the solutions for B and R does not change, so for a given time of evolution, the distribution of forces b, r, g and ỹ are
the same as for B,R, G and Y , except for the exponential factor.

AN EXAMPLE

Assuming the interaction of two alliances of two forces each, for 4,000 time steps, one of the coefficients got the
value −9.0323 · 10−5, showing the need to adapt the information. Then, time was discretized 400 · 106 times, but the
minimum value for one of the coefficients was −9.0323 · 10−10. As there are reinforcements, if all the forces share
the same domain, blue forces will eventually become red forces, and yellow forces will become green forces. The
next procedure was to maintain 4,000 time steps and use s = 4, resulting in nearly guaranteed stability because the
minimum value for one coefficient was 9.6811 ·10−6, see Fig. 1. If s = 5, instead, the minimum value is 3.4681 ·10−4.
The likelihood of having eigenvalues of multiplicity higher than 1 is very low, so in general, this procedure should lead
to a stable solution. All the eigenvalues (40.000) resulted from a grid of (100×100) cells.

FUTURE WORK

Problems from diverse disciplines will be analyzed with the back of this procedure. Spatial and temporal convolution
is another main subject to be analyzed in the near future. Also some nonlinearities in the spatial attrition equations
need efforts to decide if the solutions are truly reliable.
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FIGURE 1. Stability coefficients for s = 4 and 4,000 time steps.

TABLE 1. Main parameters

M =

⎡
⎢⎢⎣

3.9 ·10−7 2.1 1.3 1.4
−2.1 4.0 ·10−7 1.75 1.2
2.5 1.8 4.2 ·10−7 −1.5
1.3 2.3 1.5 4.3 ·10−7

⎤
⎥⎥⎦ Q =

⎡
⎢⎢⎣

4.4 ·10−7 5.0 ·10−7 5.0 ·10−7 4.4 ·10−7

5.2 ·10−7 5.3 ·10−7 5.0 ·10−7 5.0 ·10−7

5.1 ·10−7 6.0 ·10−7 5.5 ·10−7 5.0 ·10−7

5.0 ·10−7 5.0 ·10−7 4.7 ·10−7 5.1 ·10−7

⎤
⎥⎥⎦

�vB = 0.045î+0.020 ĵ

�vR = −0.050î−0.030 ĵ

�vG = 0.040î+0.025 ĵ

�vY = −0.030î+0.035 ĵ

Concept Arbitrary Unit Physical Unit

Time UT 180 min
Distance UL 7.2 ·104 m
Cell side 7.368 ·10−4UL 53.05 m
Time step 0.25 ·10−3UT 45 ·10−3 min
Velocity UV =UL ·UT−1 400 m min−1

Q UL2 see matrix
M UT−1 see matrix

Square of side 31 cells
Time length 0.1UT 18 min

partial support
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